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A moving window finite difference time domain method is developed to
simulate the propagation of electromagnetic pulses over large distances. Both
Eulerian and Lagrangian approaches to solving Maxwell’s equations in a
moving window are obtained and contrasted. The Lagrangian approach is
shown to be superior for electromagnetic pulse propagation; it is demonstrated
that dispersion-free numerical propagation can be achieved with the Lagran-
gian approach. Examples of propagation in homogeneous and inhomogeneous
media, and scattering from a interface between two media are considered.
The scattering results are achieved with a window splitting approach in which
the original incident pulse window is frozen at the interface and new windows
are generated after the interface interactions occur that move with the re-
flected and transmitted pulses. The simulation results are shown to be accurate
and physically appealing. Q 1997 Academic Press

I. INTRODUCTION

This paper describes our initial efforts in the development of an efficient and
accurate numerical approach for modeling the propagation of localized wavepackets
in complex environments over large distances. Several classes of such solutions of
the time-dependent scalar wave and vector Maxwell equations have been introduced
recently in linear and in nonlinear media. The major difficulties in modeling such
long distance propagation problems with an explicit, discrete numerical approach
are the vast computer resources needed to discretize the entire region of interest
and the accumulation of numerical dispersion error. Furthermore, these difficulties
tend to reinforce each other. The numerical dispersion can be reduced by using a
finer grid; i.e., a finer grid would maintain a prescribed level of dispersion error.
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Unfortunately, this quickly exhausts the available computer resources when large
propagation distances are desired.

As will be described in this paper, we have developed a hybrid method that
combines two well-known modeling approaches: the asymptotic ray technique and
the discrete, finite difference time domain (FDTD) method, to overcome these
difficulties. The current study emphasizes a one-dimensional realization of the
general concept. This will allow us to introduce the basic ideas of this modeling
approach, illustrate its properties, and validate its effectiveness against well-known
results. Nonetheless, it also provides us a means to illustrate our long-term goal
which is to treat fully three-dimensional propagation environments.

For the three-dimensional space-time wavepackets mentioned above, it has been
shown recently that they remain localized and propagate with the local wave speed
along the characteristic ray trajectories of the medium [1]. The propagation trajec-
tory in these problems can be determined a priori by solving the corresponding ray
equation subject to the appropriate initial conditions. A moving window which
encompasses this wavepacket can be constructed by first solving the ray trajectories
subject to the appropriate initial conditions and then describing the local field by
means of the transformation

EW (r, t) R EW Sr, t 2 Es ds

c0(s)D , (1.1)

where the integration accounts for the ‘‘geometrical’’ propagation delay along the
ray trajectory, the terms s and c0 being, respectively, the arc length and the wave
speed along the ray. Using the transformation in (1.1) to define the window and
centering the center-of-mass of the wavepacket in it, the FDTD grid is progressively
updated as the wavepacket propagates. The associated dynamics of the window
need to be determined, either analytically a priori or numerically as the computation
progresses. As the wavepacket propagates, its support changes both temporally and
spatially due to dispersion and diffraction phenomena. These properties affect the
window and cell size, as well as the space-time trajectory of the window’s center
of mass. One can model accurately its field structure with the FDTD approach in
this local environment. The resulting moving window method (the envisioned three-
dimensional concept is depicted in Fig. 1) combines the globally (large distance)
defined rays with the local discrete methods. It would allow for local window
refinements in regions of interest, for example, the main support of the wavepacket,
so that the available memory can be spent on modeling where the action is rather
than wastefully where it is not. As such, it provides a computationally efficient way
for controlling the numerical dispersion errors which are critical for modeling any
long distance wavepacket effects.

To model the wave interaction with complex structures with abrupt transitions
such as the boundaries (interfaces) between two media, it will be shown that it is
necessary to switch to a stationary FDTD window that properly models the local
environment when the wavepacket is interacting with these discontinuities. A field
will be re-radiated from these interactions; the resulting field must then be tracked
along its own ray trajectory with its own moving FDTD window. In the interface
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FIG. 1. The moving window approach for a wavepacket propagation along ray trajectory.

case, the reflected and transmitted fields will be tracked with independent moving
FDTD windows, respectively, along the reflected and transmitted rays once the
scattered field has split into these two independent component wavepackets. For
gradual transitions it must be realized that there will be continual leakage of the
reflected wave energy out the back of the moving window. Even though the forward
propagating wave energy is captured by this scheme, it is not possible to capture
this backward propagating wave energy in a finite window. Consequently we restrict
our development either to slowly varying media or media with abrupt transitions.
In this paper we clarify the proposed approach by considering the propagation of
a localized wavepacket in such one-dimensional homogeneous and inhomoge-
neous media.

Several alternative moving window formulations are presented for our one-di-
mensional test problem, viz., normal propagation of a pulsed plane electromagnetic
wave in a planar stratified medium. We use a short excitation pulse and track the
field within an FDTD window specified by the moving frame transformation (1.1)
which is determined by the local propagation speed in the medium. The motivation
for this problem choice is the desire to clarify the efficiency and accuracy of the
moving window formulation. The effect of the moving window boundary condition
and the method for generating the independent local FDTD windows during an
interface interaction will be emphasized. We also closely examine different ap-
proaches for reducing the numerical dispersion. As mentioned above, by restricting
the window to the region where the pulse is located, we are able to use fine
discretization steps while tracking the field to very large distances. However, in
order to reduce these dispersion errors further, we also introduce a coordinate
transformation that results in a moving coordinate system which is stationary relative
to the pulse. Even though the standard methods incur large dispersion errors, we
will demonstrate that when this transformed Maxwell’s equation system, termed
here the Lagrange formulation, is discretized, the resulting simulations produce
dispersion-free numerical propagation for the forward propagating pulse.
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II. ALTERNATIVE MOVING WINDOW FORMULATIONS

The moving window concept is designed to facilitate the modeling of the propaga-
tion of pulses over long ranges. In this process, a number of sources for errors must
be considered, and the means to control them developed. The most notable error
arising in long range propagation stems from numerical dispersion. Nonetheless,
effects which lead to instabilities and reduced computational efficiencies are also
of great importance. These errors will have different impacts on the results de-
pending on the specific formulation used for the moving window equations.

Two principal options have been considered for the moving FDTD windows,
viz., a stationary and a moving coordinate system. In the first option, an Eulerian
approach, Maxwell’s continuous equations are applied in the stationary coordinate
space over a different spatial region at each time step. The resulting moving FDTD
window travels along with the center-of-mass of the pulse in the stationary coordi-
nate space. Alternatively, the moving FDTD window can be attached to a moving
coordinate system and, hence, is stationary with respect to this center-of-mass
system. This Lagrange approach requires a suitable transformation of the field
equations, as shown below. These Lagrange modified field equations exhibit mark-
edly different properties from their Eulerian or standard discretization counterparts.

II.A. Euler’s Formulation: A Moving Window in a Stationary Coordinate Frame

As mentioned in the Introduction, we consider the problem of normal propagation
of a plane electromagnetic wave in a plane stratified medium identified by the
permittivity, «(z), and the permeability, e(z), of the medium. We assume (without
loss of generality) that the field is x-polarized. The Maxwell curl equations in one
space dimension and time are expressed as

­Hy

­t
5 2

c(z)
Z(z)

­Ex

­z
,

­Ex

­t
5 2c(z)Z(z)

­Hy

­z
, (2.1)

where we introduce, respectively, the wave speed and wave impedance

c(z) 5 1/Ï«e, Z(z) 5 Ïe/«. (2.2)

This set of equations has a convenient one-dimensional telegrapher equation form.
Henceforth we shall omit from the field components the coordinate labeling indices
x and y. We note that this model problem contains no conductivity or other disper-
sive effects in the medium in order to simplify the discussion and to isolate the
numerical dispersion effects, which will be discussed in detail below.

The field equations are discretized in the standard FDTD staggered grid, leap-
frog algorithm form [1, 2] as

Hn11/2
i11/2 5 Hn21/2

i11/2 2
Dt
Dz

ci11/2

Zi11/2
(E n

i11 2 E n
i )

(2.3)

E n11
i 5 E n

i 2
Dt
Dz

ciZi(Hn11/2
i11/2 2 Hn11/2

i21/2 ),
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where, for instance, Hn11/2
i11/2 represents the magnetic field sampled at the space point

(i 1 1/2) Dz at the time (n 1 1/2) Dt. This interleaved field-component, space-time
approach generates second-order accurate numerical simulations.

1. Stability analysis. In order to avoid instability problems with this standard
FDTD algorithm, it is well known [3] that the space and time steps must obey the
Courant–Friedrichs–Lewy (CFL) condition. Below we shall present a derivation
of this condition which is similar to the one given in [2, 3] but extended to nonuniform
media. It will also be used in the alternative formulations considered in subse-
quent sections.

In order to construct a transition matrix between the discrete field values at a
given point zi for consecutive time steps, we base the analysis on the following
ansatz for a spatial harmonic solution of (2.3)

Hn11/2
i11/2 5 H n11/2

i11/2 eikzi11/2, E n
i 5 E n

i eikzi, (2.4)

where the envelope functions H n
i (k) and E n

i (k) are slowly varying functions of i
but have unrestricted variation with n, i.e.,

UE n
i11 2 E n

i

E n
i

U! 2 sin K/2 (2.5)

with K 5 k Dz. Substituting (2.4) in (2.3) and using (2.5), we obtain

H n11/2
i11/2 5 H n21/2

i11/2 2 i2
Dt
Dz

ci11/2

Zi11/2
E n

i sin K/2 (2.6)

E n11
i 5 E n

i 2 i2
Dt
Dz

ciZiH
n11/2
i11/2 sin K/2. (2.7)

Substitution of (2.6) into (2.7) results in the expression

E n11
i 5 E n

i F1 2 4 SDt
DzD2

cici11/2
Zi

Zi11/2
sin2 K/2G2 i2

Dt
Dz

ciZi H n21/2
i11/2 sin K/2. (2.8)

Since c and Z are slowly varying functions on the scale of Dz, this expression may
be simplified by using, to first order, ci11/2 Q ci(1 1 As Dz ln9 ci) where ln9 c 5 c9/c
and the prime denotes a derivative with respect to z. A similar approximation
applies for Z. However, since the variations of the envelope functions E n

i and
H n

i as functions of i are typically proportional to the variation of ci (e.g., see the
WKB solution in (3.5) below), it follows that, to the same order of approximation,
we may use ci11/2 Q ci and Zi11/2 Q Zi . Equations (2.6) and (2.8) can thus be
combined in the concise form

SH n11/2
i11/2

E n11
i
D5 TiSH n21/2

i11/2

E n
i
D , (2.9)
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where the transition matrix is

Ti 5S 1 2i2ciZ21
i sin K/2

2i2ciZi sin K/2 1 2 4c 2
i sin2 K/2

D (2.10)

and we use ci 5 ci Dt/Dz. The eigenvalues of this matrix are

g 5 1 2 2c 2
i sin2(K/2) 6 i2ci sin(K/2)Ï1 2 c 2

i sin2(K/2). (2.11)

In order for the formulation to be stable, the condition gg* # 1 must be satisfied
for both eigenvalues. One may show that this condition is satisfied only if c 2

i sin2

K/2 , 1 in (2.11) (in which case ugu 5 1). Applying this condition for any K, it
follows that the space and time steps must obey the CFL condition

c(z) ; c(z)
Dt
Dz

# cmax
Dt
Dz

, 1. (2.12)

2. Numerical dispersion. The numerical dispersion relation is obtained by assum-
ing a space and time harmonic solution of the form

Hn11/2
i11/2 5 H̃ n11/2

i11/2 e2i(gtn11/22kzi11/2), E n
i 5 Ẽ n

i e2i(gtn2kzi), (2.13)

where the envelope functions H̃ n11/2
i11/2 (g, k) and Ẽ n

i (g, k) are slowly varying functions
of i and n, i.e., they satisfy (cf. (2.5))

UẼ n
i11 2 Ẽ n

i

Ẽ n
i

U! 2 sin K/2, UẼ n11
i 2 Ẽ n

i

Ẽ n
i

U! 2 sin V/2, (2.14)

where V 5 g Dt. Substituting (2.13) into (2.3) and using (2.14), we obtain the
matrix equation

S 2sin V/2 ciZ21
i sin K/2

2ciZi sin K/2 sin V/2
DSH̃ n11/2

i11/2

Ẽ n
i

D5 0. (2.15)

A solution of (2.15) requires the determinant to be zero, yielding the well-known
dispersion relationship

sin2 V/2 5 c 2(z) sin2 K/2. (2.16)

The numerical group velocity is then inferred from this numerical dispersion rela-
tionship; it has the form

vg(z) ; ­g
­k

5
c(z)Ï1 2 c 22(z) sin2 V/2

cos V/2
Q c F1 2

1
8

V2(c 22 2 1)G . (2.17)
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FIG. 2. The FDTD stencil. The full and dashed line arrows indicate, respectively, FDTD integrations
and window shifts.

In this relation g is taken as a typical frequency parameter in the pulse. The
approximate expression in (2.17), which applies if V ! 1, explains implicitly how
the dispersion errors grows for c , 1. Curves of the group velocity will be considered
in Section III, together with a thorough analysis of the long distance effects of any
errors in the numerical group velocity.

3. Discussions: Limitations of the global uniform grid approach. Applying the
standard FDTD formulation, one must invoke the stationary equations (2.3) over
a finite grid at each time step. In the Eulerian approach the discrete Maxwell’s
equations are the same as (2.3). However, the grid is now arranged to be centered
about the pulse location; this moving window is achieved at each time step by
deleting the necessary number of trailing-edge grid points from this window and
then adding an appropriate number of samples at the leading edge of the window.
The field quantities are assumed to be small in these regions to make this process
effective. The unknown field quantities are then updated in the standard manner;
an appropriate radiating boundary condition is specified at all boundaries. Note
that one may view this formulation as having a large stationary grid from which
only a small group of selected samples which is centered about the pulse location
is highlighted by the moving window at each time step. Following the updating
process, the indices of all the sampled quantities are shifted to allow for the same
set of indices at each time step; however, this shift is not an essential process in
the stationary formulation. Figure 2 shows the transformation of indices within the
FDTD stencil as a result of both the integration of (2.3) and the subsequent shift
of indices.

When applying this straightforward formulation to a one-dimensional inhomoge-
neous medium with wave speed c(z) and wave impedance Z(z), one may note that
the CFL condition (2.12) needs to be determined by the point at which the medium
wave speed is the highest and c is close to the limit c R 1. At points where c !

cmax , c may become much smaller; and the overall numerical efficiency will be
severely reduced, particularly if there is only a small region where c p cmax . On
the other hand, as will be discussed below, setting the CFL condition to its maximum
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value will cause an accumulated numerical dispersion effect over long range propa-
gation (see (2.17)). This conflict of optimal choices results in the need to carefully
select the appropriate value for the CFL condition.

II.B. Euler’s Formulation: A Moving Grid in a Speed-Normalized
Coordinate Frame

In order to alleviate these problems, a modification of the stationary grid formula-
tion is introduced. Instead of using constant space and time steps Dz and Dt, (2.1)
is modified to accommodate an optical length coordinate

z(z) 5 Ez

0

c0

c(z9)
dz9, (2.18)

where c0 is an arbitrary constant reference velocity. The time steps and the optical
path length are then sampled uniformly. This renders the spatial grid nonuniform,
with Dz now being proportional to c(z)21, while the propagation times between
any two adjacent grid points along z remain the same.

The continuous equations become

­H
­t

5 2
c0

Z(z)
­E
­z

,
­E
­t

5 2c0Z(z)
­H
­z

(2.19)

and are discretized as follows:

Hn11/2
i11/2 5 Hn21/2

i11/2 2
Dt
Dz

c0

Zi11/2
(E n

i11 2 E n
i )

(2.20)
E n11

i 5 E n
i 2

Dt
Dz

c0Zi(Hn11/2
i11/2 2 Hn11/2

i21/2 ).

By comparing (2.1)–(2.3) with (2.19)–(2.20) it follows that the analysis of the speed-
normalized coordinate frame is identical with that of the uniform Dz approach,
presented in Section II.A, with the replacement z R z and c(z) R c0 5 const.
Specifically the modified CFL condition becomes (cf. (2.12))

c0 ; c0
Dt
Dz

# 1. (2.21)

Thus, unlike the uniform Dz approach, the speed-normalized parameterization
ensures that c is a fixed constant over the entire domain. One can then set c0 5 1
for the sake of efficiency and, as shown below, for reduced numerical dispersion.

Likewise, the dispersion relation for this speed-normalized coordinate Euler
representation becomes (cf. (2.16))

sin2 V/2 5 c 2
0 sin2 K/2, (2.22)

where V 5 g Dt and K 5 k Dz. The numerical group velocity vg is given therefore
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by (2.17) with the replacements c(z) R c0 and c(z) R c0 . Thus, unlike the uniform
Dz approach, the speed-normalized approach ensures that the c as well as the
numerical group velocity are constants.

II.C. The Lagrange Formulation: Moving Coordinate Frame

Another formulation is possible and is developed by transforming Maxwell’s
equations to a coordinate frame that moves with the pulse. To achieve this Lagrange
formulation, we transform to the public coordinate system

t9 5 t
(2.23)

z9 5 z(z) 2 c0t.

The one-dimensional curl equations become

­H
­t

5 c0
­H
­z9

2
c0

Z(z)
­E
­z9

,
­E
­t

5 c0
­E
­z9

2 c0Z(z)
­H
­z9

. (2.24)

One can show that (2.24) is equivalent to the following product of one-way wave
equations in E,

S­

­tD S­

­t
2 2c0

­

­z9
D E 5 0, (2.25)

where the first and second operators are, respectively, the forward and backward
‘‘one-way wave operators’’ along the characteristics dz/dt 5 6c(z). Equation (2.25)
reveals the expected wave characteristics in the moving coordinate frame, i.e., in
the absence of numerical dispersion waves will travel at speeds 0 or 22c within
the frame.

Because of possible numerical dispersion effects, it must be stressed that the
introduction of the discrete equivalents of this system may not reproduce these
characteristic speeds. It will be shown below that the Lagrange moving frame
formulation reproduces the forward propagating characteristic ­tE 5 0 without
dispersion in contrast to the backward propagating characteristic.

Upon comparison of (2.24) with (2.1), we note that an extra spatial derivative
of the quantity that appears with the time derivative is now present. While the
shifted grid within the conventional FDTD approach of Yee [2] normally provides
an efficient numerical description for the physics underlying Eqs. (2.19)–(2.20), it
does not allow a straightforward implementation when a moving coordinate system
(t, z9) is included. Because the spatial derivative of H as well as that of E must be
evaluated in Eqs. (2.24), the values of both H and E at the same time are required.
This construct contradicts the underlying assumption of the staggered space-time
grid approach [2] that these components be evaluated at different increments of
the time step. For this reason, alternating grids for E and H as used in the Yee
algorithm [2] are no longer desirable. Instead we must resort to sampling the field
components at the same space-time locations, i.e., both E and H must be evaluated
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FIG. 3. The Lagrange FDTD stencil.

using the same grid points. The resulting Lagrange FDTD stencil is shown in Fig.
3. The discretized form of the Maxwell’s equations set (2.24) is thus

Hn11
i 5 Hn21

i 1 c0
Dt

Dz9
(Hn

i11 2 Hn
i21) 2

Dt
Dz9

c0

Zn
i

(E n
i11 2 E n

i21)

(2.26)

E n11
i 5 E n21

i 1 c0
Dt

Dz9
(E n

i11 2 E n
i21) 2

Dt
Dz9

c0Zn
i (Hn

i11 2 Hn
i21).

Note: The index n in Zn does not imply that Z changes with time; rather, it represents
the fact that the frame moves relative to the medium. In (2.26) both E and H
occupy the same grid points as desired, the grids being uniform in t and z9 with
the increments Dt and Dz9, respectively. The field components E and H are located
at the points i Dz9 and are updated at the increments of the time step, n Dt. The
numerical scheme (2.26) results in second-order central differencing in space and
time [4].

Using such a second-order differencing scheme in time requires knowledge of
the E and H values at two previous time levels. For the initial time level, t 5 0,
we have the specified analytical initial conditions as given in (3.1) below. However,
for the time instant t 5 Dt, the E and H values must be found by using a ‘‘boot-
strapping’’ technique which utilizes a first-order in time, second-order in space
Lax–Fredrichs scheme [4]. This latter scheme is used to advance the solution from
t 5 0 to t 5 Dt/8, i.e., it generates the values

HDt/8
i 5

1
2

(H0
i11 1 H0

i21) 1
Dt

16Dz9
(H0

i11 2 H0
i21) 2

c0

Z0
i

Dt
16Dz9

(E 0
i11 2 E 0

i21)

(2.27)

E Dt/8
i 5

1
2

(E 0
i11 1 E 0

i21) 1 c0
Dt

16Dz9
(E 0

i11 2 E 0
i21) 2

Dt
16Dz9

c0Z0
i (H0

i11 2 H0
i21).

The scheme (2.26) is then used to advance the solution from t 5 Dt/8 to t 5 Dt/4,
from t 5 Dt/4 to t 5 Dt/2, and then from t 5 Dt/2 to t 5 Dt. Although the Lax–
Fredrichs scheme is only first-order in time, the ‘‘boot-strapping’’ technique enables
the overall accuracy of the scheme to be second-order in time.
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1. Stability analysis. The stability criterion for this Lagrange approach is again
derived via the transition matrix approach. Expressing the fields by the local ‘‘Fou-
rier amplitudes’’ H n

i and E n
i as in (2.4), and rewriting (2.26) for these amplitudes,

assuming that they are slowly varying functions of i in the manner of (2.5), we obtain

SH n11
i

E n11
i
D5SH n21

i

E n21
i
D1S i2c0 sin K9 2i2Z21(z9)c0 sin K9

2i2Z(z9)c0 sin K9 i2c0 sin K9
DSH n

i

E n
i
D ,

(2.28)

where K9 5 k Dz9. To bring this equation into the desired transition matrix form

SH n11
i

E n11
i
D5 TSH n

i

E n
i
D (2.29)

we substitute in (2.28) the definition of the yet unknown eigenvalues g

TSH n
i

E n
i
D5 gSH n

i

E n
i
D (2.30)

thereby obtaining

T 5S i2c0 sin K9 1 1/g 2i2Z21(z9)c0 sin K9

2i2Z(z9)c0 sin K9 i2c0 sin K9 1 1/g
D . (2.31)

The characteristic equation for the eigenvalues g is therefore

det Ui2c0 sin K9 1 1/g 2 g 2i2Z21(z9)c0 sin K9

2i2Z(z9)c0 sin K9 i2c0 sin K9 1 1/g 2 g
U5 0; (2.32)

hence the eigenvalues are

g 5 i2c0 sin K9 6 Ï1 2 4c 2
0 sin2 K9. (2.33)

Again, the condition gg* # 1 is satisfied only if 4c 2
0 sin2 K9 # 1 (in which case

ugu 5 1). Consequently, the following modified CFL criterion results:

Dt #
Dz9

2c0
. (2.34)

Note that 2c0 factor in this criterion as compared with the stationary coordinate
criterion (2.21). This is due to the fact that the largest velocity in the Lagrange
system is 2c0 (see (2.38)–(2.40)).

2. Numerical dispersion. To derive the numerical dispersion relation associated



491HYBRID RAY–FDTD APPROACH

with this discretized Lagrange formulation, we express the fields by their local
‘‘Fourier amplitudes’’ as in (2.13). Assuming that these amplitudes are slowly varying
functions of i and n as in (2.5) and (2.14), we obtain (cf. (2.28))

Si2(c0 sin K9 1 sin V9) 2i2Z21(z9)c0 sin K9

2i2Z(z9)c0 sin K9 i2(c0 sin K9 1 sin V9)
DSH̃ n

i

Ẽ n
i

D5 0, (2.35)

where V9 5 g Dt. The local numerical dispersion relation is given therefore by

(sin V9 1 c0 sin K9)2 5 c 2
0 sin2 K9. (2.36)

For the numerical phase and group velocities, two solutions can be derived from
(2.36). One solution for the forward propagating wave is simply

sin V9 5 0 ⇒ vg 5 vp 5 0. (2.37)

This solution implies the Lagrange formulation of the moving window method in
one dimension is free of numerical dispersion for this wave. It should be stressed
that dispersion-free propagation is observed for the numerical implementation of
(2.24) in its entirety, rather than exploiting only ­tE 5 0. As the window moves
along with the moving frame in an arbitrary medium, no numerical dispersion errors
are observed. The relative numerical velocities of the pulse with respect to the
observer are identically zero for all frequencies. This feature of the Lagrange
formulation provides the means to ensure that long range propagation is indeed
possible with little buildup of numerical dispersion errors.

The other solution applies to the backward propagating wave

sin V9 5 22c0 sin K9 (2.38)

giving

vp 5 2
c0 sin21(2c0 sin K9)

c0K9
(2.39)

vg 5 2
2c0 cos K9

Ï1 2 4c 2
0 sin2 K9

. (2.40)

For small K9 5 k Dz9, the numerical group and phase velocities are approximately
equal to 22c0 , as can be expected from (2.25) for the backward propagating wave
in the moving window. For this component, the numerical dispersion error may
become quite large. It also affects the modified CFL condition as noted in (2.34).
However, the moving window concept is designed to track only forward propagating
waves, letting local reflections exit the window as they propagate in the direction
opposite to that of the window. Hence, they are not represented in the solution,
and the numerical errors associated with them have no effect on the forward
propagating pulse.

If, on the other hand, the solution involves both forward and backward propagat-
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FIG. 4. Gaussian pulse propagation in a homogeneous medium with c0 5 1. Observation time t 5

1000 (equivalent to 1000 pulse lengths). Line (a): Exact solution. Line (b): Numerical moving window
solutions for c 5 1 with Dz 5 0.02 and for c 5 0.5 with Dz 5 0.005 (both solutions are indistinguishable
within the figure scale). Line (c): Numerical moving window solutions for c 5 0.5 with Dz 5 0.02.

ing pulses, say due to a local abrupt discontinuity in the medium, then of course
one should use two (or more) windows. Each window should track one propagating
pulse in its own coordinate frame. Following the discussion above, the transforma-
tion to the pulse coordinate frame eliminates the numerical dispersion in the princi-
pal propagation direction of each pulse.

Other formulations are possible for the moving frame of reference. These formu-
lations include those that employ a suitable change of variables of the form E R

E/Z(z) or H R HZ(z). We have treated some of these schemes but found them
to have regions of severe instabilities. Moreover, their accuracies were not as high
as the schemes we are discussing in detail here. These alternates were not pur-
sued further.

III. NUMERICAL RESULTS FOR LONG RANGE PROPAGATION

To explore the properties of the alternative moving grid formulations we have
considered the problem of propagation of a Gaussian pulse in both a uniform and
a layered media. The pulse is specified by the initial conditions

E(z, t) t50 5 f (z), H(z, t) ut50 5
1

Z(z)
f (z), (3.1)

where f is a Gaussian pulse

f (z) 5 exp[2z2/2(c0T)2]. (3.2)

For convenience we will use here normalized space and time coordinates so that
c0 5 1 and T 5 1. The frequency spectrum of this pulse is bounded effectively by
ugu , 2 or u f u , 0.318. A discretization step Dz 5 0.05 therefore provides a pl/6
discretization at the upper frequency range.

The effect of numerical dispersion in the Euler formulation in free space is
demonstrated in Fig. 4 which shows the pulse within the moving window at t 5
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FIG. 5. Numerical dispersion characteristics for the Euler formulation. The solid and dashed lines
are the theoretical group velocities at two typical frequencies g 5 1, 1.2, and 2.0 with c 5 0.5. The
crosses and the stars show the velocities of the numerical solutions of Fig. 4 for c 5 0.5 and c 5

1, respectively.

1000, i.e., at a distance equal to 1000 pulse widths from z 5 0 for several choices
of Dz and c. Since the coordinate system is stationary as in the customary FDTD
scheme, we anticipate that there will be no numerical dispersion when c 5 1.
Indeed, the best agreement with the exact solution is obtained when c R 1, where
from (2.36), theoretically no numerical dispersion is present, even for the relatively
coarse sampling interval Dz 5 0.02. When c is reduced to 0.5, keeping Dz unchanged,
a larger numerical dispersion error is experienced. This numerical dispersion error
can then be reduced for smaller c if a smaller Dz is specified. Indeed, using Dz 5

0.005, with c 5 0.5 virtually eliminates the numerical dispersion effect for t 5 1000.
The numerical dispersion characteristics for the Euler formulation in free space

are verified in Fig. 5, where the computed pulse velocity is compared to the numerical
group velocity (2.17). The theoretical group velocity is calculated at three typical
frequencies: g 5 1, 1.2, and 2.0, and for c 5 0.5. The results are thus depicted as
functions of Dz. Also shown is the limiting case c 5 1 wherein vg 5 1. Note that
the theoretical curves have the parabolic behavior described in (2.17). The computed
pulse velocity for c 5 0.5 follows closely the theoretical curve with g 5 1.2; and
as such, it provides the explanation for the delay in the computed results when
they are compared with the exact result in Fig. 4.

It is appropriate now to assess the effect of the distance on the dispersion error.
From (2.17) it follows that the numerical group delay error at a distance z is given by

tg ; Ez

0

dz9

vg(z9)
2 Ez

0

dz9

c(z9)
Q

1
8

z
c

V2(c 22 2 1), (3.3)

where the second expression follows from the approximation in (2.17). For a pulse
of length T and upper frequency gmax 5 2f/T, it is now required that

1
8

(2f Dt/T)2(c 22 2 1) ! S z
cTD21

. (3.4)
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FIG. 6. Evolution of the numerical dispersion error for a truncated Gaussian pulse. Discretization
parameters: c 5 0.5, Dz 5 0.005. (a) t 5 1. (b) t 5 1000.

This equation clearly demonstrates how the sampling rate Dt/T must be refined as
the propagation distance z/cT increases.

The CFL limit c R 1, although desirable from the numerical dispersion standpoint,
can cause stability problems in the Eulerian approach. However, when c , 1,
numerical dispersion will occur. To demonstrate this effect, we considered the
propagation of the truncated Gaussian pulse shown in Fig. 6. The numerical result
is compared to the exact solution for t 5 1 in Fig. 6a and for t 5 1000 in Fig. 6b
when the parameters are chosen to be c 5 0.5 and Dz 5 0.005. The high frequency
components observed in Fig. 6a are generated by the discontinuity at the head of
the pulse and tend to trail behind it as time increases. Thus, they are first observed
within the pulse itself and then appear later at its tail. These higher frequencies
exit the window as time progresses; and as a result, the frequency of these numerical
noise oscillations decreases. A smoothed pulse is left behind which is compatible
with the finite grid. Absorbing boundary conditions (which are the exact one-way
wave equation conditions) allow for the trailing components to exit the window
without corrupting the remaining pulse. Due to the movement of the window, this
error therefore does not interfere with the main pulse. Usage of nonideal boundary
conditions would obviously cause local errors at the trailing boundary.

Next, the Euler and the Lagrange formulations are compared, starting with
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FIG. 7. Comparison of Euler (a) and Lagrange (b) formulation solutions for long range (t 5 1000)
truncated Gaussian pulse propagation in a homogeneous medium. c 5 0.95 and c 5 0.5 for the Euler
and Lagrange cases, respectively, while Dz 5 0.1 for both cases.

pulse propagation in a uniform medium. The fact that the Lagrange formulation
is numerical dispersion free is demonstrated in Fig. 7 for the propagation of a
truncated Gaussian pulse. The large error generated by the Euler approach (Fig.
7a) is readily contrasted with the zero error obtained with the Langrange approach
(Fig. 7b). To quantify further the errors, we compare in Fig. 8, on an enlarged scale,
the errors incurred by the Euler and the Lagrange formulation solutions for long
range propagation of a Gaussian pulse. The numerical results are shown for each
formulation for two discretization values: Dz 5 0.1 and Dz 5 0.01. As expected,
the numerical dispersion error of the Euler formulation solution is smaller for the
smaller Dz case. For the Lagrange formulation, no error is observed on the scale
of the figure for either of the values of Dz used.

We next compare the Euler and the Lagrange formulations using the optical
path length coordinate approach for the case of a Gaussian pulse propagating in a
slowly varying medium with the linear velocity profile c(z) 5 1 1 0.004z. As
discussed in Section II.B, the optical path length coordinate approach in the Euler
formulation has enabled us to specify c 5 1 throughout the medium and thereby
reduce the numerical dispersion. For the Lagrange formulation we used c 5 0.5
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FIG. 8. Comparison of Euler and Lagrange formulation solutions for long range (t 5 4000) Gaussian
pulse propagation in a homogeneous medium. The figure depicts the difference of the numerical solution
from the exact (Gaussian) solution. Lines (a) and (b): Euler formulation solutions with Dz 5 0.1 and
0.01, respectively. In both cases c 5 0.98. Line (c): Lagrange formulation solutions for both Dz 5 0.1
and 0.01 with c 5 0.49 (they are indistinguishable within the figure scale).

(see Sect. II.C). For each case we used both the discretization Dz 5 0.1 and 0.01.
The results of all four cases after a very long propagation time t 5 1000 are compared
in Fig. 9 with the WKB solution

E(z, t) 5 Ïc(z)/c0 f [t 2 z(z)/c0]. (3.5)

Notice from the WKB solution that both the amplitude and width of the pulse will

FIG. 9. Comparison of Euler and Lagrange formulation solutions for long range pulse propagation
in an inhomogeneous velocity profile: c(z) 5 1 1 0.004z. Observation time: t 5 1000. Four different
sets of parameters are shown: c 5 1 and 0.5 for the Euler and Lagrange formulations, respectively. For
each case both Dz 5 0.1 and 0.01 are used. Line (a): WKB solution. Line (b): Eulerian solution with
Dz 5 0.1. Line (c): The Eulerian solution with Dz 5 0.01 and both Lagrange solutions (they are
indistinguishable within the figure scale).
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FIG. 10. Interaction of a pulse with an interface. The window attached to the solid line incident
pulse in (a) becomes stationary and expands to include both reflected and transmitted pulses near the
interface. In (b), the window splits into two windows tracking the two individual pulses.

increase along z as z increases. Except for the Euler formulation with the coarse
grid (Dz 5 0.1), all the numerical results coincide with the WKB solution within
the scale of Fig. 9.

The interaction of a pulse with a velocity discontinuity causes the pulse to split
into reflected and transmitted pulses. These reflected and transmitted pulses are
then followed numerically within their own respective windows. The numerical
process for modeling the interaction of the incident pulse with this discontinuity
begins with ‘‘freezing’’ the window as it intercepts the interface, allowing the incident
pulse to split about the discontinuity. The time at which the window was frozen
was simply determined by analytically derived times of propagation for the pulse.
Ample time for the reflected and transmitted pulses to form was allotted before
the reflected and transmitted pulse windows were allowed to propagate. The incident
pulse and the numerical solution in this frozen window are shown in Fig. 10a for
t 5 4 from the initial time of incidence of the peak of the incident pulse. At this
time the incident pulse has interacted with the interface, but the reflected and
transmitted pulses are not yet distinct quantities. After the two distinct reflected
and pulses have been formed, this stationary window is split into transmitted and
reflected windows, propagating with their respective speeds. The numerical solutions
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in each of these oppositely propagating windows are shown in Fig. 10b for the time
t 5 5. Results for both the reflected and transmitted pulses reproduce the exact
solution to within a 1% error.

IV. PRELIMINARY EXTENSIONS TO HIGHER DIMENSIONS

Based on the one-dimensional scheme described above, we have extended our
results to higher dimensions. In [6], the case of a pulsed beam propagating along
a curved trajectory in a two-dimensional space was treated in the following two
ways: In the first one, the trajectory was determined a priori by ray-optical considera-
tions, and the moving frame orientation was adjusted to follow the curvature of
the ray. The second approach involved a real-time calculation of the principal
direction of propagation and a subsequent adjustment of the moving frame orienta-
tion. The Lagrange formulation was used to calculate the field in the moving frame.
The pulsed beam is characterized by a narrow angular spectrum centered about
the principal direction of propagation. Therefore, the dispersion characteristics of
this higher dimensional Lagrange case are similar to those of the one-dimensional
case discussed above. The numerical results indeed exhibit very low numerical
dispersion errors, and they follow the analytical results very closely.

In [7], the method was further extended to 2.5 dimensions to model the propaga-
tion of an axially symmetric pulsed beam in both a stratified medium and a paraboli-
cally graded index waveguide. The one-dimensional numerical dispersion and stabil-
ity analysis have been extended to these 2.5 dimensional cases. Again, the benefit
of very low numerical dispersion errors has enabled the simulator to produce
accurate results over the order of 105 time steps, which is the equivalent of the
order of 103 pulse lengths. The issue of formulating the appropriate boundary
conditions was recognized as critical, and has also been addressed in [7].

V. CONCLUSIONS

In this paper we introduced several numerical schemes that can be used to
simulate the propagation of electromagnetic pulses in homogeneous and inhomoge-
neous media over very large distances (thousands of pulse lengths). The main idea
is a moving window approach. Both Eulerian (a moving window in a stationary
coordinate frame and a moving window in a speed-normalized coordinate frame)
and Lagrangian (a window in a propagating frame of reference) approaches were
considered. Stability and numerical dispersion analyses for all of these approaches
were established with a similar procedure, and their implications were discussed.
These derivations of the numerical stability and dispersion relations properly take
into account either abrupt or slowly varying inhomogeneities in the medium; a
successive approximation version of these derivations could be used to quantify
the higher order corrections to these relations. Scattering from interfaces (abrupt
discontinuities in the medium properties) was also considered.

In the Eulerian approach a speed-normalized transformation was used to optimize
the discretization for the desired long range propagation distances. This transforma-
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tion allowed c R 1 and provided a constant numerical group velocity. It can be
viewed as nonuniform sampling with constant delay sampling instead of uniform
Dz sampling (such a discretized approach is termed the Goupillaud layered me-
dium [5]).

In the Lagrange approach it was shown that in the moving coordinate frame
there is no numerical dispersion for the forward moving part of the solution, but
twice as large numerical dispersion for the backward propagating part. Since that
backward propagating part leaves the moving window without generating any nu-
merical noise, the forward propagating pulse is very accurately modeled with this
scheme over extremely large propagation distances. The only penalty for this disper-
sion-free numerical propagation is that the resulting CFL condition must take into
account the largest velocity in the frame, i.e., the backward velocity 22c(z). The
resulting extra number of timesteps in any given simulation is a small addition in
simulation cost in comparison to the added costs that would be incurred in the
Eulerian approach if the discretization grid would be refined in order to reduce
the numerical dispersion to an acceptable level or if the entire propagation range
had to be gridded.

When interfaces are involved, the moving window approaches must be modified
slightly. We introduced a scheme that uses a frozen window when the propagating
pulse begins to interact with the interface. The window is frozen until the reflected
and transmitted pulses are fully generated, and then moving windows are assigned
to the resulting reflected and transmitted pulses. Propagation of those pulses is
simulated by following moving windows in each of their respective media.

Several comparisons of the numerical results generated by the Eulerian and
Lagrangian approaches were made for pulses propagating in homogeneous and
inhomogeneous media. An interface example was also treated. The numerical dis-
persion errors and the overall simulation accuracies of these schemes were quantified
with these validation cases; the results were checked against the analytically derived
estimates. Excellent agreement with the exact or known WKB solutions was found
in all cases with the Lagrangian simulator. It was shown how even the Eulerian
approach could be used to generate reasonable results with appropriate choices of
the discretization parameters.

Because these one spatial dimension results were so promising, we have extended
them to higher dimensional geometries, as alluded to in Section IV. The higher
dimensional cases that have been treated with our moving frame approach, will be
summarized in detail in a forthcoming paper. We are also beginning to apply our
results to microwave and optical pulse propagation in complex media for a variety of
remote sensing and communications applications. We will begin to include material
dispersion and nonlinearities as our approach is applied to yet more complex
problems.
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